

Q.9.	If $\mathrm{R}=\{(a, b): a=b\}$, then R is							
	A	only symmetric	B	Reflexive and symmetric	C	Symmetric and transitive	D	an equivalence relation
Q.10.	If $\mathrm{R}==\{(a, b): a \leq b, a, b$ are real numbers $\}$, then R is							
	A	reflexive and symmetric	B	reflexive and transitive	C	Symmetric and transitive	D	none of these
Q. 11	Let T be the set of all triangles in a plane with R a relation in T given by $\mathrm{R}=\{(T 1, T 2): T 1$ is isimilar to $T 2\}$. Show that R is an equivalence relation.							
Q12.	Let L be the set of all lines in a plane and R be the relation in L defined as $\mathrm{R}=\{(L 1, L 2): L 1 \perp L 2\}$. Show that R is symmetric but neither reflexive nor transitive.							
Q13	Determine whether the relation R defined on the set of \mathbf{R} of all real numbers as $\mathrm{R}=\{(a, b): a, b \in \boldsymbol{R}$ and $a-b+\sqrt{3}$ is the set of irrational numbers $\}$ is reflexive or symmetric or transitive. Why?							
Q14	Prove that the relation R on the set NXN defined by $(a, b) R(c, d)$, iff $a d=b c$, for $a l l(a, b),(c, d) \in N X N$ is an equivalence relation.							
Q15.	Prove that the relation R on the set AXA defined by $(a, b) R(c, d)$, if and only if $a+d=b+c$, for all $(a, b),(c, d) \in \operatorname{AXA}$ is an equivalence relation, where $A=\{1,2,3,4,5 \ldots, 10\}$. Write equivalence class of (25).							
Q16.	Show that the relation R defined on set $A=\{0,1,2,3, \ldots .12\}$ $\mathrm{R}=\{(a, b):\|a-b\|$ is diivisible by $4 ; a, b \in A\}$ is an equivalence relation.							
Q17.	CASE STUDY QUESTION: Sherlin and Danju are playing Ludo. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set $\{1,2,3,4,5,6\}$. Let A be the set of players while B be the set of all possible outcomes. $A=\{S, D\}$ and $B=\{1,2,3,4,5,6\}$. Based on the above information answer the following:							
	a) Write the number of possible functions from A to B. b) Detrmine if $\mathrm{R}=\{(\mathrm{x}, \mathrm{y})$: y is divisible by $\mathrm{x}, \mathrm{x}, \mathrm{y} \in B\}$ is refexive, symmetric or transitive. c) How many one to one functions can be defined from A to B ? d) If $R=\{(1,2),(2,2),(1,3),(3,4),(3,1),(4,3),(5,5)\}$, where R is relation from B to B, check whether R is an equivalence relation							

$\frac{\sim}{\sim}$	1.	A	2.	D		3.	B	4.	D
	5.	C	6.	C		7.	B	8.	D
	9.	D	10	B		13.	only reflexive		
	15	$\begin{aligned} & \{(2,5),(1,4),(3,6),(4, \\ & 7),(5,8),(6,9),(7,10)\} \end{aligned}$		17	a) 36 b) not symmetric c) 30 d) neither reflexive nor symmetric nor transitive				

